# Viscoelastic Slender Jets
### Parity argument (axis regularity + axisymmetry):
#### Velocity and pressure
Even powers for $v_z, p$ and odd for $v_r$.
> [!important] Compact notation:
> Primes are $\partial_z$:
Expanding $v_z$ in powers of $r$:
$
v_z(r,z,t)=v_0(z,t)+\varepsilon^2 r^2 v_2(z,t)+\cdots,
$
Using continuity, $v_r$ in the leading order is (see: [[continuity-slender-jet|Continuity equation in slender jet]])
$
v_r(r,z,t)= -\frac{1}{2}v_0'(z,t)\,r-\frac{1}{4}\varepsilon^2 v_2'(z,t)\,r^3+\cdots,
$
$
p(r,z,t)=p_0(z,t)+\varepsilon^2 r^2 p_2(z,t)+\cdots.
$
#### Stress
The Cauchy stress is
$
\boldsymbol{\sigma} = -p\boldsymbol{I} + 2\eta \boldsymbol{D} + \boldsymbol{\sigma}_p,
$
The momentum balance, free-surface traction balance, and shear-free condition use this $\boldsymbol{\sigma}$.
Expanding polymer stresses consistently with [[polymeric-stress-regularity-slender-jet|axisymmetry/regularity]]:
$
\sigma_{p,zz}(r,z,t)=\Sigma_{zz}(z,t)+O(\varepsilon^2 r^2),\qquad
\sigma_{p,rr}(r,z,t)=\Sigma_{rr}(z,t)+O(\varepsilon^2 r^2),
$
$
\sigma_{p,rz}(r,z,t)= r\,S(z,t)+O(\varepsilon^2 r^3).
$
> [!note] Hoop stress
> Regularity also implies $\Sigma_{rr}=\Sigma_{\theta\theta}$ at leading order.
### Governing equations
#### Axial momentum at $O(\varepsilon^0)$
Polymeric stress contribution:
$
(\nabla\cdot\boldsymbol{\sigma}_p)_z=\partial_z \sigma_{p,zz}+\frac1r\partial_r(r\sigma_{p,rz}).
$
Using $\sigma_{p,zz}\approx \Sigma_{zz}(z,t)$ and $\sigma_{p,rz}\approx r S(z,t)$,
$
\frac1r\partial_r(r\sigma_{p,rz})=\frac1r\partial_r(r^2 S)=2S.
$
Thus the $r^0$ coefficient of the axial equation becomes (why factor 4? See: [[Laplacian-in-axisymmetric-slender-jet|Laplacian in axisymmetric slender jet]]. For full derivation of LHS, see [[LHS-slender-jet|LHS of slender jet momentum]])
$
\rho\left(\partial_t v_0+v_0 v_0'\right)=-p_0'+\eta(4v_2+v_0'')+\Sigma_{zz}'+2S+O(\varepsilon^2).
$
#### Kinematic BC:
See [[continuity-slender-jet|Continuity equation in slender jet]] for details
$
\partial_t(h^2)+\partial_z(h^2 v_0)=0,
$
#### Leading-order stress BCs with polymer normal + shear stresses
> [!info] See: [[dynamic-BC-slender-jet|Full free surface stress balance]] for details.
Normal traction (leading order, $n\approx e_r$):
$
p_0=\frac{\gamma}{h} - \eta v_0' + \Sigma_{rr}+O(\varepsilon^2).
$
Tangential traction (leading order, $t\approx e_z$, $n\approx e_r$):
$
\underbrace{\eta\Big(-3v_0'h'-\frac12 v_0'' h+2v_2 h\Big)}_{\text{Newtonian part}}
+\underbrace{\sigma_{p,rz}(h)}_{\approx hS}
+\underbrace{(\Sigma_{rr}-\Sigma_{zz})h'}_{=-\Delta\Sigma\,h'}
=O(\varepsilon^2),
$
where polymeric “tensile” normal-stress difference is
$
\Delta\Sigma \equiv \Sigma_{zz}-\Sigma_{rr}.
$
#### Combining
Using the tangential stress balance to solve for $v_2$ (substituting $O(\varepsilon^2) \to 0$):
$
2\eta v_2 h
=3\eta v_0'h' +\frac{\eta}{2} v_0'' h -\sigma_{p,rz}(h)+\Delta\Sigma\,h'.
$
Next use the normal stress BC for $p_0$:
$
p_0'=(\gamma/h)'-\eta v_0''+\Sigma_{rr}'.
$
Now substitute into the axial momentum equation and using $\sigma_{p,rz}\approx r S(z,t)$:
$
\rho\left(\partial_t v_0+v_0 v_0'\right)
= -\Big(\frac{\gamma}{h}\Big)'
+3\eta\frac{(h^2 v_0')'}{h^2}
+\frac{(h^2\Delta\Sigma)'}{h^2}
+O(\varepsilon^2),
$
with $\Delta\Sigma=\Sigma_{zz}-\Sigma_{rr}$. Here, 3 is the Trouton ratio.
$\Sigma_{rr}=\Sigma_{\theta\theta}$ at leading order (so “hoop” is already accounted for).
> [!important]
> What happened to the shear stress $\sigma_{p,rz}$? It enters both (i) the axial momentum equation through $(\nabla\cdot\sigma_p)_z$, and (ii) the tangential traction condition $t\cdot\sigma\cdot n=0$. Those two appearances will cancel.
### Conservative form
Continuity (see: [[continuity-slender-jet|Continuity equation in slender jet]] for details):
$
\boxed{\partial_t h^2 + \partial_z(h^2 v_0)=0}
$
Momentum equation:
$
\rho(\partial_tv_0 + v_0 v_0')
= -\Big(\frac{\gamma}{h}\Big)' + 3\eta\frac{(h^2 v_0')'}{h^2} + \frac{(h^2\Delta\Sigma)'}{h^2}.
$
Multiply by $h^2$:
$
\rho h^2(\partial_tv_0 + v_0 v_0')
= -h^2\Big(\frac{\gamma}{h}\Big)' + 3\eta\left(h^2 v_0'\right)' + \left(h^2\Delta\Sigma\right)'.
$
Using $h^2(1/h)' = -h'$:
$
\rho h^2(\partial_tv_0 + v_0 v_0')
= \gamma\Big(h\Big)' + 3\eta\left(h^2 v_0'\right)' + \left(h^2\Delta\Sigma\right)'.
$
On the left hand side:
$
\partial_t(h^2 v_0) + (h^2 v_0^2)' = h^2(v_t + v v') \quad\text{if (by continuity equation)}\quad \partial_t(h^2)+(v_0h^2)'=0.
$
The conservative momentum equation is
$
\rho\left(\partial_t(h^2 v_0) + (h^2 v_0^2)'\right)
= \left(\gamma h + 3\eta h^2 v_0' + h^2\Delta\Sigma\right)'.
$
$
\boxed{
\rho\left(\partial_t(h^2 v_0) + \partial_z(h^2 v_0^2)\right)
= \partial_z\left[\gamma h + 3\eta h^2 \partial_zv_0 + h^2\left(\sigma_{p,zz}-\sigma_{p,rr}\right)\right].
}
$