# Stokes' first problem > [!link] Related lecture material > This derivation is part of [[2-What-is-Viscosity|Lecture 2: Viscosity and Momentum Diffusion]] <div style="text-align: center;"> <iframe width="560" height="315" src="https://www.youtube-nocookie.com/embed/cJWlouRJUNU?si=iWYa8eQIgSscSFBo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen> </iframe> </div> --- ## Physical Setup ![](../_Media/Impulsively-started-plate-1761774189020.png) A semi-infinite fluid initially at rest. At $t=0$, a plate at $y=0$ suddenly moves with velocity $u_0$. Initial and Boundary Conditions: $\begin{align} \vec{u}(x,y,t=0) &= 0 \\ \text{At } t = 0^{+}, \quad u(y=0) &= u_0 \end{align}$ --- ## Simplifying Assumptions We assume spatial uniformity in the $x$-direction: $\boxed{\frac{\partial()}{\partial x} = 0}$ Ignoring any initial transients, this leads to: From continuity equation: $\frac{\partial v}{\partial y} = 0$ Combined with no-slip at the plate: $v(y=0) = 0 \quad \Rightarrow \quad v = 0 \quad \text{for all } y$ --- ## Governing Equations $x$-momentum equation: $\rho \frac{\partial u}{\partial t} = - \frac{\partial p}{\partial x} + \mu \frac{\partial^2 u}{\partial y^2}$ $y$-momentum equation: $\frac{\partial p}{\partial y} = 0$ Pressure gradient: For an open container with $(p,u,v) = 0$ far from the plate: $\frac{\partial p}{\partial x} = 0$ Simplified momentum equation: $\boxed{\rho \frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial y^2}}$ or equivalently: $\boxed{\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial y^2}}$ where $\nu = \mu/\rho$ is the kinematic viscosity. > [!note] Key Insight > We cannot directly integrate this PDE as $u = f(y,t)$. We need a more sophisticated approach. --- ## Boundary Conditions $\begin{align} u(y,0) &= 0 \quad \text{(initially at rest)} \\ u(0,t) &= u_0 \quad \text{(plate velocity)} \\ u(\infty,t) &= 0 \quad \text{(far-field BC)} \end{align}$ --- ## Similarity Solution Approach Using dimensional analysis, we seek a solution of the form: $u = \phi\left(u_0, y, t, \frac{\mu}{\rho} = \nu\right)$ By dimensional reasoning, the velocity profile should depend on the similarity variable: $\frac{u}{u_0} = \phi\left(\frac{y}{\sqrt{\nu t}}\right)$ > [!important] Similarity Variable > The characteristic length scale grows as $\sqrt{\nu t}$, reflecting the diffusive nature of momentum transport. Define the similarity variable: $\boxed{\eta = \frac{y}{2\sqrt{\nu t}}}$ and the dimensionless velocity: $\boxed{\frac{u}{u_0} = F(\eta)}$ --- ## Transformation to ODE We now transform the PDE by computing the necessary derivatives. ### Time derivative: $\frac{\partial u}{\partial t} = u_0 \frac{dF}{d\eta} \frac{\partial \eta}{\partial t}$ where: $\frac{\partial \eta}{\partial t} = -\frac{1}{4} \frac{y}{\sqrt{\nu} t^{3/2}} = -\frac{\eta}{2t}$ Therefore: $\frac{\partial u}{\partial t} = u_0 F' \cdot \left(-\frac{\eta}{2t}\right) = \frac{-u_0 F' \eta}{2t}$ ### Spatial derivatives: $\frac{\partial u}{\partial y} = u_0 \frac{dF}{d\eta} \frac{\partial \eta}{\partial y} = u_0 F' \frac{1}{2\sqrt{\nu t}}$ $\frac{\partial^2 u}{\partial y^2} = u_0 F'' \frac{1}{2\sqrt{\nu t}} \frac{\partial \eta}{\partial y} = \frac{u_0 F''}{4\nu t}$ ### Substituting into the PDE: $\frac{-u_0 F' \eta}{2t} = \nu \cdot \frac{u_0 F''}{4\nu t}$ Simplifying: $\boxed{F'' + 2\eta F' = 0}$ This is an ordinary differential equation for $F(\eta)$. --- ## Transformed Boundary Conditions ![](../_Media/Impulsively-started-plate-1761774200063.png) The original boundary conditions become: $\begin{align} \eta = \frac{y}{2\sqrt{\nu t}} &\quad \Rightarrow \quad \begin{cases} t = 0: & \eta \to \infty \\ y \to \infty: & \eta \to \infty \\ y = 0: & \eta = 0 \end{cases} \end{align}$ Therefore: $\begin{align} F(\eta \to \infty) &= 0 \\ F(\eta = 0) &= 1 \end{align}$ --- ## Solving the ODE Starting with: $F'' + 2\eta F' = 0$ Rearrange: $\frac{dF'}{d\eta} = -2\eta F'$ Separate variables: $\frac{dF'}{F'} = -2\eta \, d\eta$ Integrate: $\ln(F') = -\eta^2 + C$ Exponentiate: $F' = A e^{-\eta^2}$ Integrate again: $\boxed{F = A \int_0^{\eta} e^{-s^2} \, ds + B}$ --- ## Applying Boundary Conditions At $\eta = 0$: $F(0) = 1$ $B = 1$ As $\eta \to \infty$: $F(\infty) = 0$ $0 = A \int_0^{\infty} e^{-s^2} \, ds + 1$ Using the Gaussian integral: $\int_0^{\infty} e^{-s^2} \, ds = \frac{\sqrt{\pi}}{2}$ We get: $0 = A \frac{\sqrt{\pi}}{2} + 1 \quad \Rightarrow \quad A = -\frac{2}{\sqrt{\pi}}$ --- ## Final Solution Substituting the constants: $\boxed{F(\eta) = 1 - \frac{2}{\sqrt{\pi}} \int_0^{\eta} e^{-s^2} \, ds}$ ### Error Function Representation The error function is defined as: $\erf(\eta) = \frac{2}{\sqrt{\pi}} \int_0^{\eta} e^{-s^2} \, ds$ Therefore: $\boxed{F(\eta) = 1 - \erf(\eta)}$ or equivalently, using the complementary error function $\erfc(\eta) = 1 - \erf(\eta)$: $\boxed{\frac{u}{u_0} = \erfc\left(\frac{y}{2\sqrt{\nu t}}\right) = 1 - \erf\left(\frac{y}{2\sqrt{\nu t}}\right)}$ --- ## Physical Interpretation > [!summary] Key Results > > 1. Diffusive spreading: The velocity profile spreads into the fluid with a characteristic length scale $\delta(t) \sim \sqrt{\nu t}$ > > 2. Self-similar evolution: At different times, the velocity profiles collapse onto a single curve when plotted against $\eta = y/(2\sqrt{\nu t})$ > > 3. Momentum diffusion: The kinematic viscosity $\nu$ acts as a diffusivity for momentum, exactly analogous to thermal or mass diffusion > > 4. Penetration depth: At any given time, most of the velocity change occurs within $y \lesssim \sqrt{\nu t}$ The solution demonstrates that viscosity is fundamentally a diffusive process for momentum transport, validating the kinetic theory picture developed in [[2-What-is-Viscosity|Lecture 2]]. ![[StokesFirstProblem.pdf]]