# LHS of the Slender-Jet Axial Equation The full axial momentum inertia terms in axisymmetric cylindrical coordinates: $ \partial_t v_z+v_r\,\partial_r v_z+v_z\,\partial_z v_z. $ Use the long-wave expansions (see: [[continuity-slender-jet|Continuity equation in slender jet]]) $ v_z(r,z,t)=v_0(z,t)+\varepsilon^2 r^2 v_2(z,t)+O(\varepsilon^4 r^4), $ $ v_r(r,z,t)=-\frac{1}{2}v_0'(z,t)\,r+O(\varepsilon^2 r^3). $ Compute each inertia contribution. Time derivative: $ \partial_t v_z=\partial_t v_0+\varepsilon^2 r^2\partial_t v_2+O(\varepsilon^4) =\partial_t v_0+O(\varepsilon^2). $ Axial advection: $ \partial_z v_z=v_0'+\varepsilon^2 r^2 v_2'+O(\varepsilon^4), $ $ v_z\,\partial_z v_z =\left(v_0+\varepsilon^2 r^2 v_2+O(\varepsilon^4)\right) \left(v_0'+\varepsilon^2 r^2 v_2'+O(\varepsilon^4)\right) =v_0 v_0'+O(\varepsilon^2). $ Radial advection: $ \partial_r v_z=2\varepsilon^2 r v_2+O(\varepsilon^4 r^3), $ $ v_r\,\partial_r v_z =\left(-\frac{1}{2}v_0'\,r+O(\varepsilon^2 r^3)\right) \left(2\varepsilon^2 r v_2+O(\varepsilon^4 r^3)\right) =-\varepsilon^2 r^2 v_0'v_2+O(\varepsilon^4) =O(\varepsilon^2). $ Therefore, at leading order, $ \partial_t v_z+v_r\,\partial_r v_z+v_z\,\partial_z v_z =\partial_t v_0+v_0 v_0'+O(\varepsilon^2). $ So the $O(1)$ LHS in the slender-jet axial equation is $ \partial_t v_0+v_0 v_0'. $