# The Virial Identity: Pairwise Forces → Divergence of Stress
## The Goal
Show that the internal forces (pairwise interactions) can be written as a divergence of a tensor:
$\boxed{\sum_i \sum_{j \ne i} \boldsymbol{f}_{ij} \, \delta_i = -\nabla \cdot \boldsymbol{C}}$
where $\boldsymbol{C}$ is the configurational (virial) momentum-flux tensor:
$\boldsymbol{C}(\boldsymbol{r}, t) = \frac{1}{2} \sum_{i \ne j} \boldsymbol{r}_{ij} \, \boldsymbol{f}_{ij} \int_0^1 \delta(\boldsymbol{r} - \boldsymbol{r}_j - s \boldsymbol{r}_{ij}) \, ds$
This is the non-obvious bridge from particles to continuum stress.
---
## Why This Matters
In Newton's second law for particle $i$:
$m_i \dot{\boldsymbol{v}}_i = \boldsymbol{f}_i^{\rm ext} + \sum_{j \ne i} \boldsymbol{f}_{ij}$
When we sum over all particles and convert to fields, the external forces become $\rho \boldsymbol{b}$ (body force per volume). But what about the internal forces? If we naively write $\sum_i \sum_{j \ne i} \boldsymbol{f}_{ij} \delta_i$, it's a sum of point forces at each particle location—not a divergence of anything.
The miracle: Newton's third law ($\boldsymbol{f}_{ij} = -\boldsymbol{f}_{ji}$) and clever algebra turn this into $-\nabla \cdot \boldsymbol{C}$. This is how internal forces become stress tensors in the continuum description.
---
## The Derivation
### Step 1: Symmetrize the Pair Sum Using Action–Reaction
Start with:
$\sum_i \sum_{j \ne i} \boldsymbol{f}_{ij} \, \delta_i$
Rewrite as a sum over *unordered pairs* $(i, j)$ with $i \ne j$:
$\sum_i \sum_{j \ne i} \boldsymbol{f}_{ij} \, \delta_i = \frac{1}{2} \sum_{i \ne j} \left( \boldsymbol{f}_{ij} \delta_i + \boldsymbol{f}_{ji} \delta_j \right)$
(We're summing each pair twice, so we divide by 2.)
Use $\boldsymbol{f}_{ij} = -\boldsymbol{f}_{ji}$ (Newton's third law):
$= \frac{1}{2} \sum_{i \ne j} \boldsymbol{f}_{ij} (\delta_i - \delta_j)$
> [!tldr] TL;DR
> Each pair force appears twice in the full double sum. We can collect them into a symmetric form: one force acting at particle $i