# Continuity in the Slender-Jet Expansion
Axisymmetric incompressibility:
$
\frac{1}{r}\partial_r(r v_r)+\partial_z v_z=0.
$
Use the long-wave expansion for axial velocity:
$
v_z(r,z,t)=v_0(z,t)+\varepsilon^2 r^2 v_2(z,t)+O(\varepsilon^4 r^4).
$
Differentiate in $z$:
$
\partial_z v_z=v_0'(z,t)+\varepsilon^2 r^2 v_2'(z,t)+O(\varepsilon^4 r^4).
$
Substitute into continuity:
$
\partial_r(r v_r)
=-r\left[v_0'(z,t)+\varepsilon^2 r^2 v_2'(z,t)+O(\varepsilon^4 r^4)\right].
$
Integrate in $r$:
$
r v_r=-\frac{1}{2}v_0' r^2-\frac{1}{4}\varepsilon^2 v_2' r^4+C(z,t)+O(\varepsilon^4 r^6).
$
Axis regularity requires $v_r(0,z,t)=0$, so $C(z,t)=0$. Divide by $r$:
$
v_r(r,z,t)=-\frac{1}{2}v_0'(z,t)\,r-\frac{1}{4}\varepsilon^2 v_2'(z,t)\,r^3+O(\varepsilon^4 r^5).
$
This is the odd-in-$r$ velocity expansion used in the slender-jet reduction.
Now apply the kinematic free-surface condition at $r=h(z,t)$:
$
h_t+v_z(h,z,t)\,h_z=v_r(h,z,t).
$
At leading order, $v_z(h,z,t)=v_0+O(\varepsilon^2)$ and
$
v_r(h,z,t)=-\frac{1}{2}h\,v_0'+O(\varepsilon^2).
$
Hence
$
h_t+v_0 h_z=-\frac{1}{2}h v_0'+O(\varepsilon^2).
$
Multiply by $2h$:
$
\partial_t(h^2)+\partial_z(h^2 v_0)=O(\varepsilon^2).
$
Leading-order 1D continuity equation:
$
\partial_t(h^2)+\partial_z(h^2 v_0)=0.
$
This is the continuity relation used in [[slender-jets-VE-order-0| VE order 0 slender jet]].