# Leading-Order Dynamic BC in a Slender Jet Leading-order free-surface stress balances (normal and tangential) used in [[polymeric-stress-regularity-slender-jet|Slender jet momentum equations]]. Use cylindrical coordinates $(r,z)$, axisymmetry, no swirl, interface $r=h(z,t)$. Total liquid stress: $ \boldsymbol{\sigma}=-p\,\boldsymbol{I}+2\eta\,\boldsymbol{D}+\boldsymbol{\sigma}_p. $ With passive gas outside, $\boldsymbol{\sigma}^{\mathrm{out}}=-p_a\boldsymbol{I}$, and constant surface tension $\gamma$, $ (\boldsymbol{\sigma}-\boldsymbol{\sigma}^{\mathrm{out}})\cdot\boldsymbol{n}=-\gamma\kappa\,\boldsymbol{n}. $ #### Projections: $ \boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}=-p_a-\gamma\kappa, \qquad \boldsymbol{t}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}=0. $ #### Geometry: $ \boldsymbol{n}=\frac{\boldsymbol{e}_r-h_z\boldsymbol{e}_z}{\sqrt{1+h_z^2}}, \qquad \boldsymbol{t}=\frac{h_z\boldsymbol{e}_r+\boldsymbol{e}_z}{\sqrt{1+h_z^2}}, \qquad \kappa=\frac{1}{h}+O(\varepsilon^2), \qquad h_z=O(\varepsilon). $ #### Long-wave fields: $ v_z(r,z,t)=v_0(z,t)+\varepsilon^2 r^2 v_2(z,t)+\cdots, $ $ v_r(r,z,t)=-\frac{1}{2}v_0'(z,t)\,r-\frac{1}{4}\varepsilon^2 v_2'(z,t)\,r^3+\cdots, $ See: [[continuity-slender-jet|Continuity equation in slender jet]] $ \sigma_{p,rr}=\Sigma_{rr}(z,t)+O(\varepsilon^2 r^2), \quad \sigma_{p,zz}=\Sigma_{zz}(z,t)+O(\varepsilon^2 r^2), \quad \sigma_{p,rz}=r\,S(z,t)+O(\varepsilon^2 r^3). $ See: [[polymeric-stress-regularity-slender-jet|Polymeric stress in slender jet]] Needed derivatives at $r=h$: $ \partial_r v_r=-\frac{1}{2}v_0'+O(\varepsilon^2), \qquad \partial_z v_z=v_0'+O(\varepsilon^2), $ $ \partial_r v_z+\partial_z v_r=-\frac{1}{2}h\,v_0''+2h\,v_2+O(\varepsilon^2). $ ## 1) Leading-order normal stress balance At small slope, $\boldsymbol{n}\approx\boldsymbol{e}_r$, so $ \boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n} =-p+2\eta\,\partial_r v_r+\sigma_{p,rr}+O(\varepsilon^2). $ Using $\boldsymbol{n}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}=-p_a-\gamma\kappa$: $ p=p_a+\gamma\kappa+2\eta\,\partial_r v_r+\sigma_{p,rr}+O(\varepsilon^2). $ Therefore $ p_0(z,t)=p_a+\frac{\gamma}{h}-\eta v_0'+\Sigma_{rr}+O(\varepsilon^2). $ If pressure is gauged by $p_a=0$: $ \boxed{p_0=\frac{\gamma}{h}-\eta v_0'+\Sigma_{rr}+O(\varepsilon^2).} $ ## 2) Leading-order tangential stress balance At small slope, expand $\boldsymbol{t}\cdot\boldsymbol{\sigma}\cdot\boldsymbol{n}=0$ to first nontrivial order: $ \eta\left[(\partial_r v_z+\partial_z v_r)+2h_z(\partial_r v_r-\partial_z v_z)\right] +\boldsymbol{t}\cdot\boldsymbol{\sigma}_p\cdot\boldsymbol{n} =O(\varepsilon^2). $ Newtonian contribution: $ \partial_r v_z+\partial_z v_r=-\frac{1}{2}h v_0''+2h v_2+O(\varepsilon^2), $ $ 2h_z(\partial_r v_r-\partial_z v_z)=-3v_0'h'+O(\varepsilon^2), $ so $ \eta\left(-3v_0'h'-\frac{1}{2}h v_0''+2h v_2\right)+\boldsymbol{t}\cdot\boldsymbol{\sigma}_p\cdot\boldsymbol{n} =O(\varepsilon^2). $ Polymer projection at small slope: $ \boldsymbol{t}\cdot\boldsymbol{\sigma}_p\cdot\boldsymbol{n} =\sigma_{p,rz}(h)+h'\big(\Sigma_{rr}-\Sigma_{zz}\big)+O(\varepsilon^2). $ Hence $ \eta\left(-3v_0'h'-\frac{1}{2}h v_0''+2h v_2\right) +\sigma_{p,rz}(h) +h'\big(\Sigma_{rr}-\Sigma_{zz}\big) =O(\varepsilon^2). $ Define $\Delta\Sigma\equiv\Sigma_{zz}-\Sigma_{rr}$, then equivalently $ \eta\left(-3v_0'h'-\frac{1}{2}h v_0''+2h v_2\right) +\sigma_{p,rz}(h)-\Delta\Sigma\,h' =O(\varepsilon^2). $