# Polymeric Stress Regularity in a Slender Jet
Axis-regularity constraints on $\boldsymbol{\sigma}_p$ used in [[polymeric-stress-regularity-slender-jet|Slender jet momentum equations]].
Use axisymmetric cylindrical coordinates $(r,\theta,z)$ with no swirl ($\partial_\theta() = 0$).
## 1) Axis regularity and rotational invariance
At $r=0$, the transverse plane is rotationally symmetric. A physical tensor field must have a unique, direction-independent limit at the axis.
For the polymer stress components in the $(r,\theta)$ plane, this implies
$
\sigma_{p,rr}(0,z,t)=\sigma_{p,\theta\theta}(0,z,t),
\qquad
\sigma_{p,r\theta}(0,z,t)=0.
$
So there is no preferred transverse direction at the axis.
## 2) Why $\sigma_{p,rr}-\sigma_{p,\theta\theta}=O(r^2)$
The radial divergence contains
$
(\nabla\cdot\boldsymbol{\sigma}_p)_r
=\partial_r\sigma_{p,rr}+\frac{\sigma_{p,rr}-\sigma_{p,\theta\theta}}{r}+\partial_z\sigma_{p,rz}.
$
To avoid a singular $1/r$ forcing at $r=0$, the difference
$
\Delta_\perp\equiv\sigma_{p,rr}-\sigma_{p,\theta\theta}
$
must vanish at least as $O(r)$, and axis smoothness with Taylor-expandable fields gives the stronger form ([[r-2-parity|why?]])
$
\Delta_\perp=O(r^2).
$
Hence
$
\sigma_{p,rr}(0,z,t)=\sigma_{p,\theta\theta}(0,z,t),
\qquad
\sigma_{p,rr}-\sigma_{p,\theta\theta}=O(r^2).
$
Equivalent decomposition near the axis:
$
\Sigma_\perp\equiv\frac{\sigma_{p,rr}+\sigma_{p,\theta\theta}}{2}
=\Sigma_{\perp,0}(z,t)+\Sigma_{\perp,2}(z,t)r^2+\cdots,
$
$
\Delta_\perp\equiv\frac{\sigma_{p,rr}-\sigma_{p,\theta\theta}}{2}
=\Delta_{\perp,2}(z,t)r^2+\cdots.
$
## 3) Why $\sigma_{p,rz}=r\,S+O(r^3)$
The axial divergence contains
$
(\nabla\cdot\boldsymbol{\sigma}_p)_z
=\partial_z\sigma_{p,zz}+\frac{1}{r}\partial_r(r\sigma_{p,rz}).
$
If $\sigma_{p,rz}\to c\neq0$ as $r\to0$, then
$
\frac{1}{r}\partial_r(r\sigma_{p,rz})\sim\frac{c}{r},
$
which is singular. Therefore boundedness requires
$
\sigma_{p,rz}=O(r).
$
With smooth odd parity in $r$,
$
\sigma_{p,rz}(r,z,t)=r\,S(z,t)+O(r^3).
$
## 4) Leading-order form used in slender-jet reduction
A consistent regular expansion is
$
\sigma_{p,zz}(r,z,t)=\Sigma_{zz}(z,t)+O(\varepsilon^2 r^2),
$
$
\sigma_{p,rr}(r,z,t)=\Sigma_{rr}(z,t)+O(\varepsilon^2 r^2),
$
$
\sigma_{p,\theta\theta}(r,z,t)=\Sigma_{\theta\theta}(z,t)+O(\varepsilon^2 r^2),
$
$
\sigma_{p,rz}(r,z,t)=r\,S(z,t)+O(\varepsilon^2 r^3),
$
with
$
\Sigma_{rr}=\Sigma_{\theta\theta}
\quad\text{at leading order.}
$
So the independent leading-order polymer contribution in the axial 1D model is the axial-radial normal-stress difference
$
\Delta\Sigma\equiv\Sigma_{zz}-\Sigma_{rr},
$
while hoop stress is not an additional independent leading-order degree of freedom.